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aerosols to large droplets that can contaminate nearby 
surfaces and personal protective equipment (PPE) are 
formed. Due to the low settling rate, smaller aerosols re-
main in the air for a long time and can be inhaled into 
the upper and lower respiratory tract. Droplets larger 
than 10 micrometres in diameter do not remain long in 
the air and settle quickly on nearby surfaces. Although 
they can be inhaled into the upper respiratory tract, they 
are less likely to reach the lower respiratory tract, but can 
cause surface contamination or direct contact with open 
mucous membranes. Larger droplets can carry larger 
amounts of the virus than smaller droplets or aerosols. 
Thus, dentists need good protection from inhaled aero-
sols and larger droplets. To ensure the safety of patients 
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Abstract. The major purpose of this research is to analyse and select the relevant mathematical modelling methods that 
will be employed for developing an algorithm. To fulfil the major purpose, three following objectives were raised. First, 
to select and substantiate the most common mathematical modelling methods. Second, to test the pre-selected meth-
ods under laboratory conditions so that the most relevant method for implementing the target project could be identi-
fied. Third, to prepare at least 3 models for application. The research results indicate that when evaluating the respira-
tory virus (SARS-CoV-2 causing COVID-19) concentration and survival rate dependence on a number of traits, the 
methods of descriptive statistics, confidence intervals, hypothesis testing, dispersion analysis, trait dependence analysis, 
and regression analysis are employed. All the above-listed methods were tested under laboratory conditions and thus 
can be applied to evaluate the effectiveness of the project product – a device designed to prevent transmission of res-
piratory viruses through air droplets. Selection of a particular method depends on a set of traits to be analysed, a trait 
type (quantitative, qualitative), a trait distribution type, and parameters. In the context of COVID-19, there is an urgent 
need to bring new products to market. Since most of the new products developed are directly related to research, it is 
very important to calculate the algorithms required to provide the service. Therefore, in order to calculate the optimal 
algorithm, it is necessary to analyze the algorithms already on the market. In this way, the products developed can gain 
a competitive advantage over competitors’ products. Given that the equipment placed on the market will be equipped 
with HINS radiation sources, such a product will become original and new on the market. Therefore, it is necessary to 
evaluate several methods of mathematical modelling. It is also necessary to take into account that the placing on the 
market of a product takes place in the context of global competition.
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Introduction 

The spread of COVID-19 is associated with transmission 
of aerosols and droplets containing severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) to healthy 
subjects through breathing, talking, sneezing and cough-
ing. When providing a variety of dental services, dentists 
work close to a patient’s face and often use high-speed 
dental devices that aerosolize body fluids such as saliva 
and blood, which puts these professionals at a signifi-
cantly increased risk of getting infected with or trans-
mitting SARS-CoV-2. When using water-cooled, rotating 
or vibrating devices in the oral cavity, together with a 
patient’s normal breathing, coughing and sneezing, aero-
sols and droplets ranging in size from small inhalable 
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and dentists, it is necessary to use measures to limit 
the generation and inhalation of aerosols and droplets. 
Masks and respirators are the main measures used to re-
strain the release and inhalation of aerosols, but they are 
insufficient. Scientific literature review (Derruau et  al., 
2021) provides answers to 72 questions related to den-
tistry and Covid-19 disease. The answers were developed 
by 11 authors after analysing the information provided in 
377 scientific publications. More than 90% of the publi-
cations were issued in 2020–2021. The authors answered 
the questions on a variety of relevant topics, including 
epidemiology, virology, immunology, diagnostics, oral 
SARS-CoV-2 transmission, clinical trials for COVID-19 
treatment, current treatment options, vaccines, infection 
prevention and control options in the dental practice. It 
was emphasized that new protective measures, devices 
and physical barriers needed to be developed to more 
reliably prevent transmission of the virus when providing 
dental services.

A variety of mathematical models can be employed to 
evaluate the effectiveness of new anti-viral measures. The 
report focuses on the use of ultraviolet (UV) radiation 
to prevent virus transmission through air droplets when 
providing dental services; the results of the report will be 
employed for developing a new UV-based respiratory vi-
rus eradication device in the context of the project “Pre-
venting transmission of respiratory viruses (COVID-19) 
through air droplets when providing dental services” 
(No. 01.2.1-LVPA-T-858-01-0025). Therefore, the aim of 
this study is to select the most appropriate mathemati-
cal modelling methods for evaluating the effectiveness 
of a device developed to prevent transmission of respira-
tory viruses (SARS-CoV-2 causing COVID-19 disease) 
through air droplets when providing dental services.

Because the newly developed product will be placed on 
the market in the face of global competition. It is important 
to evaluate the mathematical modelling methods that will 
be used to develop the new algorithm. It should be noted 
that the market segmentation of R&D products entering 
the market under COVID-19 disease differs.

1. Literature background

Length SARS-CoV-2 is transmitted to humans through 
air droplets and aerosols, as well as contact routes. In 
both cases, the virus spreads from an infected patient’s 
nose and / or mouth by breathing, talking, and sneez-
ing. During respiration, warm (36 °C) and moist (6.2% 
of water) gases in the alveoli rise to the mouth and nose, 
where they cool and condense before being ejected 
(0.6–1.4  m/s) through the airways. The droplets emit-
ted (0.8–1 µm in diameter) contain water and mucous 
particles from the alveoli and upper respiratory tract, 
which may carry viruses. The droplets form a bio-aerosol 
and can infect people nearby, and also linger in the air 
(Derruau et al., 2021). Aerosols disperse in the air at a 
distance of 0.5–3 m. Thus far, the question of the virus 
viability and concentration in the air is open (Abkarian 

et al., 2020). When sneezing, air expulsion is stronger (up 
to 13 m/s), so the air carries a larger amount of nasal/oral 
mucosal infectious substances, forming large droplets up 
to 100 µm in diameter (Derruau et  al., 2021). Within 
a few milliseconds, the droplets diffuse at a distance 
of 0.7 m. The heaviest particles fall down, contaminate 
surfaces and become phomits (dead objects containing 
disease-causing bacteria). Within 10–20 s, the largest 
droplets lose water through evaporation, usually at low 
relative humidity and high air temperature. The small 
particles with a small amount of water can linger in the 
air for many hours or even days. As a result, viral air 
contamination can get worse over time, usually in en-
closed spaces without adequate ventilation. Airborne vi-
ruses settle directly into the human airways. Being highly 
contagious, airborne viruses are an important route for 
disease transmission (Zhang et al., 2020).

To evaluate the stability of the viruses, a solution 
containing SARS-CoV-2 viruses was sprayed on various 
surfaces (Van Doremalen et al., 2020). The stability of the 
viruses on plastic and stainless steel surfaces was greater, 
72 h and 48 h respectively, than on copper and card-
board, 4 h and 24 h respectively. Another study revealed 
that protective masks could be contaminated with SARS-
CoV-2 for several days (Chin et al., 2020). These results 
confirm the likelihood of the infection through contact 
with equipment and dental tools because the virus can 
remain viable for several days on plastic and steel surfac-
es which are often used in medicine (Chin et al., 2020). 

Literature offers many recommendations on how to 
reduce the risk of the infection when providing dental 
services. Patients with suspected and confirmed COV-
ID-19 disease are recommended to refuse aerosol-gen-
erating procedures (AGPs). When AGPs are required 
for dental treatment and cannot be delayed, the risk can 
be reduced by rinsing the mouth, insulating the spaces 
with rubber curtains, and employing intensive saliva 
suction. In case an AGP is performed, the dental office 
must be naturally or mechanically ventilated before ad-
mitting a new patient (Centers for Disease Control and 
Prevention, 2020). Proper ventilation of the dental of-
fice by bringing in fresh and clean outdoor air can play 
an important role in preventing airborne infections by 
reducing the concentration of infectious respiratory 
aerosols in the indoor air. There are three types of venti-
lation: natural (window), mechanical and mixed ventila-
tion. Dental offices are recommended at least 6 (ideally 
12) air changes per hour (Centers for Disease Control 
and Prevention, 2020). The World Health Organization 
(WHO) recommends an average natural ventilation rate 
of ≥60 L/s/per patient or ≥12 air changes per hour with 
mechanical room ventilation (World Health Organiza-
tion [WHO], 2020). 

Based on Italian experience, dental practice-related 
risks and recommendations for doctors working under 
conditions of the COVID-19 pandemic are provided 
in article (Izzetti et  al., 2020). It emphasizes the need 
to develop new treatments and safe service provision 
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protocols that would significantly reduce the amount of 
droplets, aerosols and patient contact. Standard protec-
tive measures are insufficient to protect against the effects 
of aerosols and droplets. The immediate risk of inhala-
tion is usually associated with the use of hand tools and 
ultrasonic scalers which generate aerosols and droplets 
that are often mixed with saliva and blood. It is recom-
mended to: 1) avoid and reduce the use of nozzles so as 
to diminish aerosol and/or droplet generation, and use 
hand-pieces with antiretractive or antireflux valves in-
stead; 2) place a rubber cover to significantly reduce the 
dispersion of aerosol and droplets in the treatment room; 
3) employ surgical aspiration to control the dispersion 
of airborne particles; 4) use measures to reduce the risk 
of saliva stimulation and cough. The analysis of 22 stud-
ies revealed that human coronaviruses such as SARS and 
MERS can linger on surfaces for up to 9 days, but can be 
effectively eradicated within one minute by disinfection 
with 62–71% ethanol, 0.5% hydrogen peroxide, and 0.1% 
(1  g/l) sodium hypochlorite (Ge et al., 2020). The article 
also presents the strategies for reducing droplet forma-
tion while providing various dental services. For instance, 
in the case of endodontics, a rubber curtain should be af-
fixed; in the cases of dental filling and pediatric dentistry, 
such measures as limited use of rotating tools, chemical 
treatment of decay, insulating rubber curtains, and active 
disinfection of surfaces are recommended.

What dental instruments and tools generate the larg-
est amounts of aerosols and droplets? This question was 
partly answered in the review published at the end of 
2020 (Innes et al., 2020). Its purpose is to identify which 
dental instruments and tools generate droplets and aer-
osols, and to describe droplet spread and deposition. 
When preparing the review, the authors were looking for 
relevant articles published before 2020-08-20 in the fol-
lowing databases: “Medline” (OVID), “Embase” (OVID), 
“Cochrane”, “Scopus”, “Web of Science” and LILACS. A 
total of 83 studies met the inclusion criteria and covered: 
ultrasonic scalers (USS, n = 44), high-speed air rotors 
(HSAR, n = 31), oral surgical instruments (n = 1), low 
speed hand tools (n = 4), air-water syringes (n = 4), pol-
ishing tools (n = 4), prophylactic tools (n = 2), and hand 
scalers (n = 2). When conducting experiments with the 
above-mentioned tools, they were found to substantially 
contaminate a dentist’s waist, hand, and a patient’s body. 
The heterogeneity of the studies did not allow for accu-
rate comparisons, but a hierarchy of contamination risks 
was developed: higher risks (USS, HSAR, air and water 
syringes, polishing, extraction by employing motorized 
hand tools); medium risk (low speed hand tools, pro-
phylactic tools, extraction devices); lower risks (water sy-
ringes and hand scalers). The authors of the review state 
that due to heterogeneity of the studies, only qualitative 
conclusions can be drawn and suggest to continue with 
researching and developing standardized methodologies 
that would facilitate the synthesis of this type of research.

Articles (Lindsley et  al., 2020; Wilson et  al., 2020; 
Morawska et  al., 2020) discuss the relevant scientific 

issues that need to be addressed in the nearest time. The 
purpose of the research introduced in article (Bizzoca 
et al., 2020) is to rank the risk of routine dental proce-
dures, taking into account the threats of the SARS-CoV-2 
virus. After ranking the risk of infection, the teams of 
dentists in each dental practice are provided the recom-
mendations on procedure safety and personal protective 
equipment (PPE). Taking into account the risk of the vi-
rus transmission, the authors of this research analysed 42 
routine dental procedures. Risk ranks were estimated for 
each procedure based on the following ranking system: 
direct contact with saliva (1 point), direct contact with 
blood (2 points), low spray/aerosol quantities transmit-
ted through air and water syringes (3 points), high spray/
aerosol quantities produced by rotating, ultrasonic and 
piezoelectric tools (4 points); and duration of a proce-
dure. By employing this new risk ranking system, the 
authors categorised various dental procedures by their 
risk ranks: low (1–3), medium (4–5), and high (≥6). The 
safety protocol for each procedure was aligned with the 
estimated risk rank. Risk ranks also contributed to selec-
tion of the relevant PPE. Considering the major purpose 
of the report, the following sections address only eradica-
tion of viruses by employing ultraviolet radiation.

The effects of ultraviolet (UV) rays on microorgan-
isms have been analysed for many years. They eradicate a 
wide variety of bacteria, viruses, fungi, and other micro-
organisms that lose their ability to regenerate or mutate. 
A 2021 review of 377 dentistry and COVID-19 related 
scientific papers, published over the last year and a half, 
provides: “... non-contact disinfection technology, such 
as ultraviolet radiation or evaporated hydrogen perox-
ide, can complement, but not replace, manual surface 
cleaning for virus removal. The efficacy of alternative 
disinfection methods (e.g. ultrasonic waves, UV radia-
tion and blue LED light) against SARS-CoV-2 has not 
been sufficiently studied”. In this section of the report, 
we review the properties of UV light and scientific arti-
cles that apply UV rays to eradicate respiratory viruses 
(SARS-CoV-2 causing COVID-19 or related viruses) and 
analyse the effectiveness of the measures or devices used.

The total dose, to which the irradiated aerosol virus is 
exposed, is equal to the product of the UVG irradiation 
intensity and the irradiation duration (Tseng & Li, 2005). 
The dependence of the part of the viruses remaining af-
ter UVG irradiation on irradiation duration is called the 
viral survival function.

The data for estimating the viral survival function is 
collected by employing biosamplers; then the presence of 
SARS-CoV-2 virus is determined from the samples, and 
viability of the virus is measured in TCID50 units or the 
virus concentration PFU/ml = 0.7∙TCID50 (Kenarkoohi 
et al., 2020; Van Doremalen et al., 2020).

Linear regression methods are used to construct the 
viral survival function, or if the data do not meet the 
model presumptions, various alternatives to the linear 
regression analysis model are employed. If the viral sur-
vival function is nonlinear, a logarithmic transformation 
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is performed before the linear regression analysis. The 
examples of the model application are provided in article 
(Lin & Li, 2002). It presents the survival functions for 
several viruses at different doses of UVGA.

There are many irradiation-based technologies that 
can be used to deal with the COVID-19 pandemic 
(Sabino et  al., 2020). UV-C germicidal irradiation can 
be applied to disinfect surfaces, air and water. Its effects 
depend on the wavelength of the rays and the relative 
humidity of the air. The effectiveness of UV-C decreases 
with rising relative humidity. When removing viruses 
from surfaces, the effect of UV-C depends on the type of 
a surface. UV-C 254 nm rays are harmful to the human 
eyes and skin, so they should only be used when they 
do not cause any direct effects on humans. The major 
drawbacks of UV-C application are as follows: the po-
tential of damaging open human tissues, a higher risk of 
cancer, and potential destructive effects on materials and 
surfaces in the long run. An overview of the advantages 
and disadvantages of different irradiation technologies is 
provided in article (Sabino et al., 2020).

In their previous works, the authors of article (Buo-
nanno et  al., 2020) proved that 222 nm UVC radiation 
effectively eradicates airborne viruses and extended 
their studies to investigate the effectiveness of ultraviolet 
light against the respiratory human coronaviruses alpha 
HCoV-229E and beta HCoV-OC43. Low doses of 1.7 and 
1.2 mJ/cm2 inactivated 99.9% of aerosolized coronavirus 
229E and OC43. Because the genomes of all human coro-
naviruses are similar, it is likely that UVC radiation inacti-
vation effectiveness will be similar when eradicating other 
human coronaviruses, including SARS-CoV-2. Based on 
the results of beta-HCoV-OC43 research, continuous ex-
posure of infected areas to UV light at the current stand-
ard dose (~3 mJ/ m2/8 h) would inactivate the virus by 
~90% within ~8 minutes, by 95% – within ~11 minutes, 
by 99%  – within ~16 minutes, and by 99.9%  – within 
~25 minutes. Thus, exposure to ultraviolet light at the cur-
rent low normative doses can practically inactivate virus-
infected areas. The following mathematical methods were 
used to research the dependence of coronavirus survival 
on the 222 nm UVC radiation dose: descriptive statistics, 
hypothesis testing, parameter confidence intervals, linear 
regression, robust regression, and bootstrap for small sam-
ples (Rotomskis & Streckytė, 2007).

The dependence of the virus survival on the dose of 
UVC 222-nm radiation was estimated by dividing the 
PFU/ml fraction in each UV dose (PFUUV) by zero-
dose fraction (PFUcontrols): S = PFUUV/PFUcontrols 
(Buonanno et al., 2020). For each replicate experiment, 
the logarithm of the survival value was estimated to 
bring the distribution of residual errors closer to the 
normal distribution and thus satisfy the model presump-
tions. The robust linear regression analysis was employed 
to construct a linear regression equation in which ln[S] 
is a dependent variable, and a UV dose D (mJ/cm2) is an 
independent variable, ln [S] = –k × D, where k represents 
a 222 nm UVCI radiation inactivation rate constant or 

a sensitivity coefficient (Panov & Borisova-Papancheva, 
2015).

The SARS-CoV2-induced COVID-19 pandemic 
has led to widespread interest in effective and reliable 
disinfection methods to combat the virus, including ul-
traviolet germicidal inactivation (UVGI). Because the 
coronavirus is new, the recent literature is still lacking 
the research in its susceptibility to ultraviolet light. The 
paper presents the estimates of the effects of UVGI on 
SARS-CoV-2 that were obtained based on the studies 
focused on susceptibility of a close genomic relative, 
SARS-CoV-1, to UV light. Article (Arguelles, 2020) 
compares the genomic sequences of the two coronavi-
rus species and reveals that the theoretical susceptibility 
of both species to UV is almost identical and differs by 
only 1.48% (Desboulets, 2018). The nonlinear regres-
sion analysis method was applied to SARS-CoV-1 sur-
vival data, obtained from the literature reviewed. The 
approximate UV-C dose required to inactivate the virus 
was found to be below the detection limit of the assay 
at 36,144 J / m2 (≥5-log). By using this dose as a UVGI 
benchmark to affect SARS-CoV-2, a minimum exposure 
time t ≈ (1.5 × 106)π · (r2/P) can be estimated; here r 
represents the distance from a UV-C source to a tested 
surface, P stands for the wattage of the germicidal bulb, 
and time t is expressed in seconds. For instance, irradia-
tion with a 15 W UV-C bulb, 6 inches from the surface 
to be disinfected must last at least 2 hours. In this paper, 
a nonlinear regression formula for evaluating UVGI ir-
radiation efficiency was obtained from the experimental 
results (Arguelles, 2020). Other researchers found that at 
the appropriate irradiation dose, a set of UV-C lamps was 
effective in reducing the spread of respiratory viruses in 
dental offices (Botta et al., 2020). In article (Khaiboullina 
et al., 2021), the method of dispersion analysis (ANOVA) 
was employed to research the effectiveness of the virus 
eradication with UV-C rays (Dutton, 2021).

To evaluate the effectiveness of UV-C radiation in 
inactivating surfaces (Dos Santos & de Castro, 2021), 
various hospital surfaces infected with 6 different types 
of viruses were researched. The surfaces were disin-
fected with a portable UV device, 254 nm UV-C light 
and 45.6 mW/cm2 radiation intensity at a distance of 
1 cm from the surfaces. The light dose was 0.912 J/cm2. 
After the disinfection, virus concentrations on the sur-
faces were quantified and compared to the control (non-
irradiated) group. The comparison was performed by 
applying a statistical t-criterion for paired samples. The 
differences were considered statistically significant when 
p ≤ 0.05 (Dos Santos & de Castro, 2021). 

A recent study (Gilbert et al., 2020) revealed that UV 
rays could decontaminate the protective N95 mask tis-
sue contaminated with SARS-CoV-2. The effectiveness 
of UVGI radiation depends on a mask manufacturer, 
material and the medium containing the virus (liquid, 
air or surface) (Čekanavičius & Murauskas, 2014). Al-
though there is a risk that UV rays can damage the pro-
tective mask materials and their effectiveness in filtering 
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particles, many different studies on the effects of UV rays 
did not find any significant deterioration in the quality 
of protective masks, even at UVGA doses several times 
higher than the dose required for virus disinfection 
(Yang et al., 2021).

1.1. Economic significance in developing a product 
usage algorithm

During the COVID-19 pandemic, the speed with which 
a product was placed on the market became particularly 
important. Therefore, the sooner a new product is placed 
on the market, the higher its demand may be. And the 
payback of such a product is faster. Another very im-
portant factor is the algorithm of using the developed 
product, in this case mathematical modeling becomes 
important, which should determine the optimal algo-
rithm and its application sequence. In order to determine 
the optimal algorithm, it is necessary to take into account 
the most important conditions determining the time and 
conditions of application of the algorithm. In this case, 
the time period in which the COVID-19 virus is elimi-
nated becomes paramount. Another issue is the ease of 
use of the equipment for the user. The less you have to 
pay attention to the equipment and how to turn it on 
or off, the less time and money is required. Therefore, it 
can be said that it is rational to turn on the equipment at 
the beginning of the work and to turn it off at the end, 
because the service life of HINS radiation sources is long 
enough and studies show that the virus becomes infec-
tious after 9 seconds of use, but PCR viruses are not de-
tected until 30 minutes after use. Based on these results, 
we have found that it is possible to automate the algo-
rithm of turning the devices on and off, thereby reducing 
the user’s time spent using the equipment. By estimating 
the staff time costs in this way, it is possible to determine 
the impact of the algorithm developed on the basis of 
mathematical modeling on the additional costs of using 
the equipment (Matys & Grzech-Leśniak, 2020).

1.2. Results

The literature analysis revealed that when evaluating the 
effectiveness of the measures undertaken to prevent the 
spread of respiratory viruses (in particular, SARS CoV-2 
causing COVID-19) through air droplets, virus concen-
trations are measured at different points: inside and out-
side a patient’s mouth; points at various distances to the 
virus source (a patient’s mouth, a phantom mouth or an 
infected surface); input and output of the virus transmis-
sion prevention device; on the surfaces of the dental of-
fice; a patient’s skin, a doctor’s protective mask or shield, 
clothing, dental tools and devices.

The two main dependent traits of these studies are 
as follows:

 – The respiratory virus (SARS CoV-2 causing COV-
ID-19) concentration (in the air or on surfaces). 

 – The respiratory virus (SARS CoV-2 causing COV-
ID-19) survival time (in the air or on surfaces).

Most of the experiments were aimed at investigating 
the dependencies of the above-mentioned traits on vari-
ous quantitative and/or qualitative characteristics:

Type of aerosols. Aerosols with SARS-CoV-2 vi-
rus and its strains (Great Britain, South Africa, Brazil, 
etc.), artificially generated aerosols with similar diffusion 
properties as real ones (used in simulation experiments, 
e.g. when researching the effectiveness of aerosol extrac-
tion from a certain environment or the effects of suction 
devices on the spread of the virus.

The UVGA source and irradiation characteristics. 
A source type and wavelength (e.g., λ = ∈(200; 280)nm); 
UV radiation intensity I (W/m2) (when getting further 
from the source, UV radiation intensity is decreasing ex-
ponentially); irradiation duration (s or min.); irradiation 
dose D (J/m2) which is equal to the product of UV radia-
tion intensity and irradiation duration D = I t.

Type of an irradiated object. Air (aerosols in a pa-
tient’s mouth, aerosols at a device’s input, aerosols in 
the air of the dental office), surfaces (skin, dental in-
struments, a dentist’s and a patient’s personal protective 
equipment (protective clothing, protective masks and 
shields)).

Characteristics of an irradiated object. Tempera-
ture, length, width, height, volume, area, age, condition 
and other qualitative and quantitative characteristics.

Type of a dental service. Provided by a dentist, en-
dodontist, oral hygienist, periodontist, orthopaedist.

Risk rate of a dental procedure. Low, medium, high.  
Characteristics of a dental office. Area, volume, air 

ventilation system, air ventilation intensity, air tempera-
ture, air humidity.

In virtually all studies, the respiratory virus (SARS-
CoV-2 causing COVID-19) concentration or survival 
dependence was examined for only 1–3 characteristics. 
Other traits were considered fixed or not mentioned at 
all.

Literature addresses the issues of the transfer of 
SARS-CoV-2 aerosol particles that still need to be an-
swered in the near future: How does the ability of an 
airborne virus to infect diminish? How do speaking, 
coughing and breathing affect viral emissions? What 
is the mechanism of aerosol generation and how does 
the amount of contaminated aerosols change when 
providing different medical, including dental, servic-
es? How does a worker’s risk of getting infected with 
the virus depend on the concentration of aerosols, the 
type of personal protective equipment, and the length 
of time in the infected environment? What engineer-
ing measures are most effective in preventing the 
infection caused by breathing and touching contami-
nated surfaces? For instance, ultraviolet germicidal 
irradiation (UVGA) is known to be effective in eradi-
cating viruses in the air and on surfaces, but little is 
known about the effectiveness of UVGA in eradicating 
SARS-CoV-2, including the dose of UVGA required 
to eradicate the virus, depending on temperature, hu-
midity, and other traits.



Evaluation of the Mathematical Modelling Methods Available in the Market

59

Literature analysis also revealed that when evaluating 
the respiratory virus (SARS-CoV-2 causing COVID-19) 
concentration and survival rate dependence on a number 
of traits, the methods of descriptive statistics, confidence 
intervals, hypothesis testing, dispersion analysis, trait de-
pendence analysis, and regression analysis are employed. 
All the above-listed methods have been tested under 
laboratory conditions and thus can be applied to evalu-
ate the effectiveness of the project product  – a device 
designed to prevent transmission of respiratory viruses 
through air droplets. Selection of a particular method 
depends on a set of traits to be analyzed, a trait type 
(quantitative, qualitative), a trait distribution type, and 
data applicability for one or another method. The follow-
ing sections provide a brief description of the methods 
selected as well as recommendations and presumptions 
for their relevant application. All of the methods selected 
have been implemented programmatically by employ-
ing data analytics software SAS, R, SPSS, etc. (Elliott & 
Woodward, 2015; Lalanne & Mesbah, 2016, 2017).

The main purpose of descriptive statistics is to pro-
vide a concise description of the data collected. Qualita-
tive and quantitative data are systematised by employing 
numerical characteristics: frequencies, relative frequen-
cies, mean, median, standard deviation, quantiles, and so 
forth. Data can be graphically represented by bar charts, 
pie charts, fishbone diagrams, histograms, etc. There are 
many methods of graphical data representation. Which 
method is best for a particular situation, depends on the 
method applied and the traits being analysed.

Numerical data characteristics are used to briefly de-
scribe and compare the sets of the data collected. The 
characteristics are divided into two main groups. Posi-
tion characteristics describe the magnitude of data val-
ues. The major position characteristics are mean, medi-
an, mode, and quantiles. Dispersion characteristics de-
scribe the variability of data values. The major dispersion 
characteristics are general dispersion, standard deviation, 
quartile width, and coefficient of variation.

Position characteristics. The major position charac-
teristics are mean, median, mode, and quartiles.

The sample mean is estimated as follows:

1

1 n

i
i

x x
n =

= ∑ ,

where n marks the sample size. The sample mean de-
scribes the mean value of a sample.

A sample’s q-quantile divides the variation line into 
q×100 and (1–q)×100 percentages (0<q<1), i.e. q×100 
percent sample values are not higher than quantile, and 
(1–q)×100 percent  – not lower than quantile xq. The 
first quartile (lower) is the median of the lower side; the 
third quartile (upper) is the median of the upper side, i.e. 
when p = 0.25 and p = 0.75, we get the lower x0.25 and the 
upper x0.75. quartiles. The median divides the data into 
two halves, while the purpose of the quartiles is to divide 
the data into quarters. The median itself is the second 
quartile, so about 50% of the numbers are no larger than 

the median. The quantiles x0.01, x0.02, …, x0.99 are referred 
to as empirical percentiles.

Dispersion characteristics. Quartile width (QW) is 
commonly used to eliminate the distortion caused by 
variances. The quartile width is equal to the difference 
between the upper (third) and lower (first) quartiles 
QW  = x0.75 – x0.25; it describes the dispersion of 50% 
middle data values. Quartile width is considered a reli-
able characteristic of dispersion.

Sample dispersion: 2 2

1

1 ( )
1

n

i
i

s x x
n =

= −
− ∑ , describes 

the degree of trait X value dispersion around the sample 
mean. The definition of a sample dispersion proposes 
that it is measured in square units. Thus, to describe the 

degree of dispersion, another characteristic 2s s= if 
often used; this characteristic is referred to as a sample’s 
standard deviation.

The degree of random value dispersion is also repre-
sented by the coefficient of variation:

K
sV
x

= .

Quantity x
ss
n

=  is referred to as a standart error of 

mean. The larger is sample size n, the smaller is estima-
tion error x . 

Asymmetry and excess coefficients. A sample’s (em-
pirical) asymmetry coefficient (skewness) sA  represents 
asymmetry of the empirical distribution. If the distribu-
tion is symmetric with respect to the mean, then 0sA = . 
In the case of right asymmetry, 0sA > , while in the case 
of left asymetry, 0sA < . In the case of a normal distribu-
tion, 0sA = .

A sample’s (empirical) excess coefficient (kurtosis) 
represents the peak ( 0)kE >  or flatness ( 0)kE <  of the 
empirical distribution density (histogram), compared to 
the normal distribution. In the case of a normal distribu-
tion, 0kE = . If the maximum of the empirical distribu-
tion density function is higher (lower) than the normal 
law, then the empirical distribution is said to have a posi-
tive (negative) excess.

Estimates of the population parameters (mean, stand-
ard deviation, median, quantile, correlation coefficient, 
regression coefficients, etc.) are random variables. Their 
realizations obtained from random samples are scattered 
around the true value of the population parameter. In 
practice, it is important to know the range to which an 
unknown population parameter may belong.

Taking into account parameter Θ̂  (sample mean, 
median, quantile, standard deviation, a regression equa-
tion, etc.), we want to know the range in which the values 
of the population parameter Θ  are going to vary under 
a given probability. 

Therefore, once a point estimate Θ̂  has been found, 
it is necessary to answer the question about the accuracy 
and reliability of this estimate. When solving practical 
problems, it is important to know what possible errors 
can be expected, if we replace an unknown parameter 



V. Gaidelys, E. Naudžiūnaitė

60

Θ  with its point estimate Θ̂. What is the probability that 
the errors will not exceed particular ranges? These ques-
tions are especially relevant when the sample size is small 
because then the point estimate is highly random.

Because Θ̂  is a random variable, ( ) 1P Θ − ε < Θ < Θ + ε = − α
 

 
( ) 1P Θ − ε < Θ < Θ + ε = − α
 

 is required to be valid with a high probability
(1 ) {0.9; 0.95; 0.95}− α ∈ . The interval ( ; )Θ − ε Θ + ε

 

is 
referred to as a confidence interval, probability 1− α  – 
as a confidence level, and quantity ε – as an error. We 
will present an algorithm for estimating the mean confi-
dence interval when distribution of an observed quantity 
is normal.

Finding the confidence interval of the normal dis-
tribution mean. A random sample ( )1 2; ; nx x x x=  is 
given. The distribution of observed trait X is known to 
be normal ( )~ , .X N µ σ  Both parameters, mean µ and 
standard deviation σ  are unknown.

The problem is to find the confidence interval of the 
unknown population mean .µ

Solution algorithm: 
The best point estimate of µ is sample mean x  

1

1ˆ
n

i
i

x x
n =

µ = = ∑ .

For constructing the confidence interval, the statistics 
are used:

( ), ~ 1xt n t St n
s
− µ

= − .

The confidence level 1− α  is selected.
Quantiles of the Student’s distribution are estimated: 

2 ; 1ntα −  ir 
21 ; 1nt α− − .

The mean confidence interval is constructed:

1 1 ; 1 ; 1
2 2

( ) ( ; )
n n

S SPI X t X t
n n−α α α

− − −
µ = − ⋅ − ⋅ .

The formulas for finding the confidence intervals for 
various distribution parameters are provided in sources 
(Čekanavičius & Murauskas, 2002, 2014; McHugh, 2011; 
Judd et al., 2017). Three interrelated variables are used to 
construct the confidence interval: the confidence level, 
sample size n, and accuracy. When seeking the highest 
possible level of confidence, the width of the confidence 
interval increases greatly, which diminishes the accuracy 
of the information.

The confidence interval of the normal distribution 
2~ ( , )X N µ σ  dispersion is as follows:

2 2
2

1 2 2
1 ; 1 ; 1

2 2

( 1) ( 1)( ) ( ; )

n n

S n S nPI −α
α α

− − −

⋅ − ⋅ −
σ =

χ χ
.

2 2

1

1 ( )
1

n

i
i

S X X
n =

= ⋅ −
− ∑ represents an unshifted point 

estimate of the population dispersion 2σ .

Event probability confidence interval:

1 1
2

2

ˆ ˆ(1 )ˆ( ) ( ;

ˆ ˆ(1 )ˆ ),

p pPI p p z
n

p pp z
n

−α α
−

α

⋅ −
= −

⋅ −
−

here ˆ mp
n

= .

When comparing virus concentrations on two dif-
ferent surfaces, the hypotheses concerning population 
mean differences for two independent or two paired 
samples are tested by employing Student’s statistics. In 
this section, the hypotheses concerning two mean differ-
ences are tested for only two independent samples. When 
it is necessary to test the hypothesis of the equality of 
three and more means, the method of dispersion analysis 
is applied.

For comparing unknown means of two traits, when 
samples 1 2( , , , )nX X X  ir 1 2( , , , )mY Y Y  are obtained 
by observing two independent normal random quanti-
ties 2~ ( , )X XX Ν µ σ  and 2~ ( , )Y YY Ν µ σ  with unknown 
means Xµ  ir Yµ  and dispersions, Student’s criteria are 
applied. Suppose we need to test the following hypoth-
eses:

0 : ,X YH µ = µ

:a X YH µ ≠ µ , (or :a X YH µ > µ  or :a X YH µ < µ ).

For testing hypothesis H0, when dispersions are equal 
2 2 2 ,X Yσ = σ = σ  Student’s statistics is applied:

2 (1/ 1/ )p

X YT
S n m

−
=

+
,

it possesses Student’s distribution with (n+m–2) degrees 

of freedom; here 
2 2

2 ( 1) ( 1)
2

X Y
p

n S m S
S

n m
− + −

=
+ −

 is a joint 

population dispersion 2σ  estimate. By inserting expres-
sion 2

pS  into the statistics T formula, we obtain the fol-
lowing equation:

2 2

( 2)

( 1) ( 1)Y Y

X Y nm n mT
n mn S m S

− + −
=

+− + −
.

Statistics T is also used for constructing the confi-
dence interval of mean difference 1-α:

2
1 /2; 2( ) (1/ 1/ ).n m pX Y t S n m−α + −− ± +

When dispersions of the variables observed are un-
equal 2 2 ,X Yσ ≠ σ  the so-called Behrens-Fisher problem is 
faced. Several approximate solutions to this problem are 
known. Student’s statistics is used to test hypothesis H0:

2 2/ /x y

X YT
S n S m

−
=

+
;
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it possesses Student’s distribution with 1

x y
ν =

ν + ν
 de-

grees of freedom; here

22

2 2
1

1

X

x
X Y

S
n

nS S
n m

 
 
 ν = ⋅

− 
+ 

 

,    

22

2 2
1

1

Y

y
X Y

S
m

mS S
n m

 
 
 ν = ⋅

− 
+ 

 

.

When trait distributions are unknown, the Mann-
Whitney-Wilcoxon rank sum criterion is applied to two 
independent samples. Suppose we have two samples. 
Let’s denote:

n1 – the number of members in the first sample,
n2 – the number of members in the second sample,
R1 – sum of the ranks of the first sample members,
R2 – sum of the ranks of the second sample members.
Here n1 and n2 are not necessarily equal.
We test the hypothesis:

0 :H Distributions of traits X and Y are equal,
aH : Distributions of traits X and Y are not equal.

When samples are large (n1>20, n2>20), the hypoth-
esis concerning the overlap of the distributions in two 
populations is tested by applying the following statistics:

( )1 1
1 1 2 1

1
2

n n
U n n R

+
= + − .

If the null hypothesis that all n1+n2 observations 
have the same distribution is valid, then statistics U has 

a normal distribution with mean 1 2
2

n n
µ =  and stand-

ard deviation 
( )1 2 1 2 1

.
12

n n n n+ +
σ =  Then statistics 

1U
Z

− µ
=

σ
 has the standard normal distribution with 

mean equal to 0 and standard deviation equal to 1.
Compatibility hypotheses are recommended to be 

tested in a variety of ways. Based on different criteria, 
the gap between the theoretical and empirical distribu-
tion is evaluated by employing various measures. Thus, 
by applying several criteria, more information can be 
obtained.

The Kolmogorov-Smirnov criterion is used to test the 
compatibility hypothesis:

H0 : The function of a random quantity X distribu-
tion is ( )F x . 

Let us define the Kolmogorov-Smirnov criterion. 
Suppose that the function of a random quantity X dis-
tribution is F(x). Based on the sample data, the empiri-
cal distribution function ( )nF x is estimated. To test the 
compatibility hypothesis, Kolmogorov and Smirnov pro-
posed the statistics that measures the difference between 
the empirical and theoretical distributions and evaluates 
the difference between the empirical distribution func-
tion ( )nF x and the theoretical distribution function F(x): 

max | ( ) ( ) |nx
Z n F x F x= − ,

here n – the sample size.

One of the most popular compatibility criteria is chi-
square criterion 2χ . It is used to test hypotheses about 
the distribution of a trait (normal, binomial, etc.) in a 
population. Criterion 2χ  indicates whether the differ-
ence between the empirical and theoretical distributions 
is significant, i.e. it is verified whether the empirical dis-
tribution is compatible with the theoretical model. Cri-
terion 2χ applies to the aggregate data, so the sample has 
to be quite large.

The general scheme of estimating the criterion is as 
follows:

 – In case a discrete variable is observed, the sample 
values (category frequencies) are calculated initially.

 – In case a continuous variable is observed, the range 
of values is divided into non-intersecting intervals, 
and then interval frequencies are calculated.

Suppose category (interval) frequencies are repre-
sented by 1 2, , , ,kO O O  here k is a number of catego-
ries (intervals). By using the proporties of the teoretical 
distribution (indicated in the formulation of hypothesis

0H ), we estimate how many values of the variable should 
be assigned to each category (would fall into each inter-
val), if the hypothesis about distribution of the variable 
was valid, i.e. the probable frequencies 1 2, , , .kE E E  are 
found. 

The differences in expected and observed frequencies 
are estimated. The larger are these differences, the less 
likely is the hypothesis about the distribution to be valid. 
The decision-making rules are based on the magnitude 
of the differences between the expected and observed 
frequencies.

Further we will describe how compatibility criterion
2χ applies, when a continuous variable is observed. Sup-

pose that based on the variable observed, the population 
can be divided into k categories. The share of the popula-
tion assigned to the jth category is marked , 1, ,jp j k=   
(the equivalent formulation: a random variable that ac-
quires the jth value with probability jp is observed). In 
case the hypothesis about distribution 0H  is valid, the 
distribution of the variable observed is known, and the 
probability of the variable being assigned to the jth cat-
egory is 0

jp . The hypothesis concerning compatibility of 
the empirical and theoretical distributions is formulated:

0 0 0
0 1 1 2 2

0

: , , , ,

: , at least one of 1, , .
k k

a j j

H p p p p p p

H p p j k

 = = =


≠ =





When 0H  is valid, 0
j jE np=  observations out of the 

sample with n observations should be assigned to the 
jth category. If they actually are assigned to Oj, then the 
difference j jO E−  indicates whether hypothesis 0H  is 
probable. In the case of a discrete distribution, compat-
ibility of the empirical and theoretical distributions is 
verified by employing the following statistics:

( )2

2

1
.

k j j

jj

O E

E=

−
χ = ∑



V. Gaidelys, E. Naudžiūnaitė

62

If hypothesis 0H  is valid, then the criterion statistics 
possesses distribution 2χ  with k–1 degrees of freedom. 
When verifying hypothesis H0, the criterion with the 
right critical area is used. 

2 2
1 , 1( )kP −α −χ ≥ χ = α .

H0 non-rejection area is 
0

2 2
1 ; 1[0; )kH −α −χ = χ , and the 

critical area is 2 2
1 ; 1[ , )K k−α −χ = χ ∞ . If the statistical value 

under observation is assigned to H0 non-rejection area 

0
2 2 ,imt Hχ ∈χ  then H0 is not rejected, otherwise, it is re-

jected.
When comparing virus concentrations at different 

levels of qualitative factors, the dispersion analysis is 
employed. This section examines the differences between 
three or more population mean differences. The actual 
population means are often unknown, so their differ-
ences are measured based on sample mean differences.  

When sample mean differences are significant, it 
is very unlikely to be a coincidence. We then say that 
sample means differ statistically significantly and there 
is a high probability that the means of the populations 
themselves also differ in this sense. Suppose we are in-
terested in:

The first studies based on dispersion analysis were 
published by Fisher. Dispersion analysis is the research 
of the dependence of random distributions on particular 
factors that are qualitative. One of the major purposes of 
dispersion analysis is to research whether the means of 
dependent variable Y, measured in different populations, 
substantially vary.

A completely randomised one-factor dispersion anal-
ysis model. Suppose that distribution of a random vari-
able Y can depend on a factor A which acquires I differ-
ent values 1a , 2a , ..., Ia . Based on factor A, I independ-
ent populations are distinguished. The same dependent 
variable Y (measured on an interval or a ratio scale) is 
estimated in each population. In the population where 
factor A acquires value iA a= , the variable is denoted 
by iY , and its sample mean – by iY . Dispersion analysis 
can be based on a number of models (Judd et al., 2017). 
Further we will discuss a completely randomised disper-
sion analysis model with constant factors that is most 
commonly applied.

Suppose that distribution of observed random vari-
able Y depends on factor A which is at I different levels. 

Thus, we have I samples, each sized ,   1,in i I= , 
1

I

i
j

n n
=

= ∑ .

Each observation ijy  is divided into two components:

,  1,..., ,  1,...,ij i ij iy e j n i I= β + = = ,

here iβ  denotes unknown population means )i iM(Y = β , 
and ije  represents independent random variables with a 
standard normal distribution ( )20, .N σ

The null hypothesis of one-factor dispersion analysis 
proposes that the means of all population variables are 
equal.

0 1: ... .IH β = = β

To verify the null hypothesis, Fisher statistics is used:

A

e

SS
F

SS
= , 

here
( )2

1

I

A i i
i

SS y y n⋅ ⋅⋅
=

= −∑  – sum of the deviation squares 

that describes the effect of factor A on the mean of ob-
served random variable Y;

( )2

1 1

inI

e ij i
i j

SS y y ⋅
= =

= −∑∑   – sum of the deviation 

squares that describes the effect of random error factor 
E on the mean of observed random variable Y, in the 
model defined by random eij;

y⋅⋅ – empirical mean of sample Y ; iy ⋅ – empirical 
mean of sample Yi;

( )2

1 1

inI

p ij
i j

SS y y⋅⋅
= =

= −∑∑ – total sum of deviation 

squares;
p A eSS SS SS= + ;

1 1, ,
1A A e eSS SS SS SS

I n I
= =

− −
– means of devia-

tion squares (a sample’s factor and residual dispersions).
If H0 is not rejected, then the observation data do 

not contradict the null hypothesis, i.e. it can be consid-
ered that factor A does not affect the mean of observed 
(researched) random variable Y. If the observations do 
not contradict the null hypothesis 0H  concerning the 
equality of the means, then the analysis can be conclud-
ed. In this case, all observants can be aggregated into a 
single sample of size n, obtained by observing the normal 
random variable with mean 0β  and dispersion 2 .eσ  The 
opposite conclusion hardly satisfies a researcher because 
the question naturally arises as to how Y depends on the 
levels of factor A. What factor levels are the cause of non-
homogeneity? Can the levels of factor A be grouped so 
that the difference in means within the groups is insig-
nificant? Multiple comparisons can be used to solve this 
problem (Ehtezazi et al., 2021).

When applying the Fisher criterion, dispersions of 
the populations must be equal. If the hypothesis con-
cerning equality of the dispersions is rejected, then, to 
test the hypothesis of the means equality, the Welch or 
Brown-Forsythe criteria should be applied instead of the 
Fisher criterion (Tseng & Li, 2005). 

The criteria for multiple comparisons are divided 
into a priori and a posteriori (post hoc). A priori com-
parisons are planned before the dispersion analysis or 
instead of it. A posteriori (post hoc) comparisons are 
made after the results of the analysis (the results of test-
ing the hypothesis about the equality of several means) 
are known. There are many different criteria for multiple 
comparisons. Most criteria (only with different levels of 
significance) can be used as both a priori and a posteriori 
multiple comparisons.
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Post Hoc criteria. Commonly used a posteriori (post 
hoc) multiple comparison criteria, such as LSD (Least 
Significant Difference), Bonferroni, Sidak, Scheffe, R-E-
G-W F (Ryan-Einot-Gabriel-Welsch F criterion), R-E-
G-W Q (Ryan-Einot-Gabriel-Welsch Q criterion), S-N-
K (Student-Newman-Keuls criterion), Tukey, Tukey b, 
Duncan, Hochberg GT2, Gabriel, Waller-Duncan, and 
Dunnett criteria are applied when dispersions of the 
populations under consideration are equal. Tamhane T2, 
Dunnett T3, Games-Howell, and Dunnett C criteria are 
applied when dispersions of the populations under con-
sideration are not equal (McHugh, 2011).

Each of the criteria has both advantages and disad-
vantages. Some criteria apply when all sample sizes are 
the same, while others can be used when the sample sizes 
are not the same. Some criteria apply when population 
dispersions are equal, while others can be used when the 
dispersions are unequal. Some criteria are more likely 
to reveal statistically significant differences, while oth-
ers (more conservative criteria) are not likely to do that, 
and so forth. Selection of an appropriate post-hoc mul-
tiple comparison criterion is not an easy task; it depends 
on the data under consideration and requires deeper re-
search (Čekanavičius & Murauskas, 2002; Aggarwal & 
Ranganathan, 2017). Further we will provide two criteria 
most relevant for implementation of this project. 

The Bonferroni criterion. Based on the Bonferroni 
criterion, the level of the experiment significance Eα  
(i.e. the probability of at least once incorrectly derter-
mining a statistically significant difference between two 
means when comparing all potential pairs) is selected, 
and all mean pairs are compared by applying Student’s 
t-criterion at the significance level / ,E Cα = α  when 

( 1) / 2C I I= − . The Bonferroni criterion is not applied 
when there are many population means because α de-
creases dramatically, and a statistically significant mean 
difference is rarely obtained, although the actual popula-
tion means differ (i.e. the probability of the second type 
error increases significantly) (McHugh, 2011).

The Tukey criterion. The Tukey’s HSD (Honestly 
Significant Difference) criterion is one of the most com-
monly used criteria. It is a good alternative to the Bonfer-
roni criterion with many samples. The Tukey’s criterion 
is very conservative, i.e. it is less likely to reject the null 
hypothesis, i.e. to recognize mean differences as statisti-
cally significant. By employing the Tukey criterion, ho-
mogeneity groups are formed. If the samples, selected 
from the populations, vary in size, then the results of 
the homogeneity groups and the HSD criterion may also 
differ because formation of the homogeneity groups is 
based on harmonic means. The power of the Tukey’s 
HSD criterion when researching a larger number of sam-
ples is higher compared to the power of the Bonferroni 
criterion, and vice versa – the power of the Bonferroni 
criterion is higher when researching a smaller number 
of samples.

When the data do not meet the presumptions of the 
dispersion analysis, the nonparametric Kruskal-Wallis 

criterion is applied to k-independent samples. Then the 
following hypotheses are tested:

0 :H Variable distributions are equal, when alternative
aH : Variable distributions are not equal.

The hypothesis proposes that all samples are extract-
ed from the populations in which the variable under 
consideration has the same distribution and the same 
mean. The hypothesis is tested by employing the statis-

tics 
2

1

12 3 ( 1)
( 1)

k j

jj

R
H n

n n n=
= − ⋅ +

+ ∑ , where nj represents 

the number of the jth’s sample members, Rj – sum of the 
jth’s sample member ranks, k – the number of samples, 
and 1 2 kn n n n= + + +   – total number of all sample 
observations. When the hypothesis is valid, statistics H 
has approximately 2χ  distributions with k–1 degrees of 
freedom. The Kruskal-Wallis criterion requires that the 
size of all samples is at least 5.

It is often necessary to answer the question of wheth-
er the traits observed are dependent or independent. If 
they are found to be dependent, then strength of the cor-
relation is evaluated. Correlation coefficient is a meas-
ure of trait interdependence. By testing the hypothesis 
of a population correlation coefficient or calculating its 
confidence interval, we answer the question about the 
interdependence of traits in the population in terms of 
linearity, monotony, compatibility, etc.

Nevertheless, the correlation coefficient does not re-
veal the cause of the correlation. Two variables X and Y 
can be strongly correlated for three reasons: variable X 
affects variable Y; variable Y affects variable X; both vari-
ables X and Y are affected by the third variable; thus, the 
relationship revealed by the correlation analysis cannot 
be interpreted as causality, but only as a measure of as-
sociation or relationship.

To evaluate the strength of the linear relationship 
between two quantitative traits, Pearson’s correlation 
coefficient is employed. It applies when distributions of 
traits X and Y under consideration are normal. Pearson’s 
correlation coefficient for a sample is estimated by the 
formula:

2 2 2 2
.

( ) ( )

xy

x y

k xy x yr
s s x x y y

− ⋅
ρ = = =

− −



The linear relationship is stronger when value |r| is 
closer to 1. If r>0, then, as the values of one trait are 
increasing, the values of the other are increasing linearly. 
If r<0, then as the values of one trait are increasing, the 
values of the other are decreasing linearly; r does not 
reveal any non-linear dependency. The larger is the sam-
ple, the closer is r to the unknown population correlation 
coefficient .ρ

Testing the Pearson correlation coefficient hypothesis. 
Which value of the population correlation coefficient’s ρ 
point estimate r can be considered statistically signifi-
cant? At which value of r it can be stated that there ex-
ists a statistically significant linear relationship between 
observed traits X and Y?
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Suppose two traits X and Y with unknown correla-
tion coefficients in population ρ are observed. To answer 
the question of whether these values are linearly corre-
lated, the following hypotheses are verified:

H0 : ρ = 0;
aH : ρ ≠ 0.

If H0 is rejected, then X and Y are statistically signifi-
cantly correlated in the population under consideration; 
the strength of the relationship may vary from very weak 
(ρ close to zero) to a functional relationship (|ρ|=1). 

When solving practical problems, we rarely know a 
type of the trait distribution observed or know that the 
distributions are not normal. In this case, the coefficients 
not related to distributions should be employed. Spear-
man’s rank correlation coefficient ρS describes strength of 
the relationship between X and Y in terms of monotony, 
i.e. as X is increasing, Y is increasing (not necessarily 
linearly) or decreasing monotonically. This coefficient is 
used to evaluate the strength of the relationship between 
trait ratios, intervals and order scales. To test the hypoth-
esis concerning significance of Spearman’s rank correla-
tion coefficient, Student’s statistics is applied.

1.3. Evaluation of the qualitative trait correlation

Suppose we observe a pair of qualitative traits (X, Y). 
Trait X acquires I different values, while trait Y acquires 
J different values. Let us denote the observed frequency 
of pairs (xi; yj) by oij. The results of the observations are 
provided in the trait dependence Table 1.

Table 1. Trait dependence table

X\Y y1 y2 … yJ ∑

x1 o11 o12 … o1J o1•

x2  o21 o22 … o2J o2•

. . .
. . .

. . .
. . .

. . .
xI oI1 oI2 … oIJ oI•

∑ o•1 o•2 … o•J n

It is often necessary to answer the question of wheth-
er the observed traits are dependent or independent. 
Then the following hypotheses are tested:

H0 : “Traits are independent”.
Ha : “Traits X and Y are dependent”.
To verify the hypotheses, criterion 2χ with the right 

critical area is applied:

( )
( )( )( )

2

2 2

1 1
~ 1 1 ,

I J ij ij

iji j

O E
I J

E= =

−
χ = χ − −∑ ∑

here Oij – observed frequency; Eij – expected frequency.
When H0 is rejected, strength of the relationship is 

evaluated. There are over 100 correlation coefficients that 
describe strength of the relationship between particular 
qualitative traits. We will provide several relationship 
measures when the observed variables are measured 

based on the name scale. The same rule applies to all 
the above-mentioned relationship measures: the higher 
is their absolute value, the greater is trait dependence; 
the closer to zero is their value, the weaker is trait de-
pendence.

Coefficient Phi is a relationship measure for tables 
2×2; it is also referred to as the overlap coefficient and 
expressed as follows:

2 / .nϕ = χ

Coefficient’s ϕ  variation interval for table 2×2 is 
[0; 1]. 

Cramer’s V coefficient:

( )
, 0 1

min 1, 1
V V

I J

ϕ
= ≤ ≤

− −
.

For table 2 2× , Cramer’s V coefficient overlaps with 
coefficient ϕ .

We present several relationship measures when the 
observed variables are measured based on the order 
scale. The same rule applies to all the above-mentioned 
relationship measures: the higher is their absolute value, 
the greater is trait dependence; the closer to zero is their 
value, the weaker is trait dependence. The values of the 
measures may vary between –1 and 1.

The Kendall rank correlation coefficients measure the 
strength of the relationship in terms of compatibility be-
tween the variables measured on the ratio, interval, and 
order scales. All possible values of the rank pairs repre-
senting the observed variables (X,Y) are compared with 
each other and it is verified whether they are compatible, 
incompatible or bounded. If comparing the respective 
values of the rank pairs (rxi, ryi) and (rxj, ryj), represent-
ing variables X and Y, we estimate that:

(rxi>rxj) and (ryi> ryj) or (rxi <rxj) and (ryi< ryj), 
then the pair is considered compatible. A number of the 
compatible pairs in a sampe is denoted P;

(rxi>rxj) and (ryi< ryj) or (rxi<rxj) and (ryi>ryj), then 
the pair is considered incompatible. A number of the in-
compatible pairs in a sampe is denoted by Q;

(rxi = rxj) and (ryi ≠ ryj), then the pair is considered 
bounded by x; a number of such pairs in a sample is 
denoted by Tx;

(rxi ≠ rxj) and (ryi = ryj), then the pair is considered 
bounded by y; a number of such pairs in a sample is 
denoted by Ty;

(rxi = rxj) and (ryi = ryj), then the pair is considered 
bounded by x and y; a number of such pairs in a sample 
is denoted by Txy. 

The total number of bounded pairs in a sample is de-
noted by T = Tx + Ty + Txy .

Kendall rank correlation coefficient aτ  evaluates 
strength of the relationship in terms of compatibility and 
applies when a sample does not have any bounded pairs.

1 ( 1)
2

a
P Q

n n

−
τ =

⋅ −
, 1 1a− ≤ τ ≤ .
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When a sample has bounded pairs, Kendall rank cor-
relation coefficient bτ  is employed:

,b
x y

P Q
P Q T P Q T

−
τ =

+ + + +
  1 1b− ≤ τ ≤ .

If in the IxJ trait dependence table I=J, strength of 
the relationship is evaluated by employing Kendall coef-
ficient bτ ; if I≠J, Stewart’s cτ  is recommended:

2
( )
( 1)c

m P Q
n m

⋅ −
τ =

⋅ −
,

here min( , )m I J= , 1 1c− ≤ τ ≤ .
The Goodman-Kruskal coefficient γ indicates if a 

sample has more compatible or incompatible pairs ( γ  
is equal to the value of the probability difference that 
shows to which extent the probability that a random pair 
is compatible is higher than the probability that it is in-
compatible when γ>0, and vice versa when γ<0):

.P Q
P Q

−
γ =

+
When γ = 0, a sample has the equal number of com-

patible and incompatible pairs; when γ = 1, all pairs are 
compatible; when γ = –1, all pairs are incompatible. Note: 
coefficient γ does not consider bounded pairs. Somers 
proposed a coefficient’s γ modification – coefficient d that 
considers bounded pairs: 

.
( ) / 2x y

P Qd
P Q T T

−
=

+ + +

He also proposed two more coefficients for the case if 
there is no symmetry between variables X and Y (asym-
metric Somers’ coefficients):

XY
x

P Qd
P Q T

−
=

+ +
,  YX

y

P Qd
P Q T

−
=

+ +
.

Variables X and Y are considered symmetrical if the 
success of the variable value forecast does not depend on 
whether X values are forecasted when knowing y values, 
or vice versa. Otherwise, the variables are considered 
asymmetric.

Regression analysis is aimed at investigating causal 
relationships between dependent and independent vari-
ables. Within the framework of the target research area, 
the dependent variables are as follows: virus concentra-
tion in the air or on surfaces, and virus survival in the air 
or on surfaces. Regression analysis is a powerful math-
ematical model, but, unfortunately, this analysis is often 
misapplied or misinterpreted, which leads to inaccurate 
forecasts or unreasonable decisions. For instance, linear 
regression analysis is still applied in the cases when its 
presumptions are not met (researchers often fail to verify 
the normality of the regression residues, homoscedastic-
ity, the effect of exclusions on the regression coefficients, 
multicollinearity, and other presumptions). Thus, reliable 
conclusions in regression analysis are only drawn if the 

presumptions of a model’s relevance are met. This issue 
is discussed further in the section.

The regression model relates a dependent variable Y 
with other – independent – variables X1, X2 ,..., XK. By 
employing the regression equation, values of the depend-
ent variable Y can be forecasted based on the values of 
independent variables with a certain degree of reliability. 
The most common model of linear regression is as fol-
lows:

0 1 1 2 2 ... .K KY X X X= β + β + β + + β + ε

The model of multiple linear regression analysis is 
most conveniently written by employing matrices (Dar-
lington & Hayes, 2017). Suppose we have n observa-
tions – Y1 , Y2 ,..., Yn – of a dependent variable, and n 
observations – X1j , X2j ,..., Xnj – of each independent var-
iable Xj , 1,j K= . Then the model is written as follows: 

Y X= β + ε , here

1

2

n

Y
Y

Y

Y

 
 
 =  
 
  



,  

11 12 1

21 22 2

1 2

1
1

1

k

k

n n nk

X X X
X X X

X

X X X

 
 
 =  
 
  





    



,

1

2

n

β 
 β β =  
 
β  



 ,  

1

2

n

ε 
 ε ε =  
 
ε  



.

Y – the vector of (n×1) dimension dependent variable 
values; X – the matrix of n×(K×1) dimension independ-
ent variable values; β  – the vector of (n×1) dimension 
regression equation coefficients; ε – the vector of (n×1) 
dimension random errors (Darlington & Hayes, 2017).

In the model of multiple linear regression analysis, 
variables Y, X1, X2 ,..., XK  are quantitative, measured on 
interval and ratio scales, or binary (dichotomous) vari-
ables. The model of linear regression analysis can be ap-
plied if the data meet particular conditions. Most of the 
presumptions of the regression analysis are the require-
ments to be met by random errors iε , which indicate to 
which extent the observed value Y varies from the value 
that would be obtained when making forecasts based on 
the regression equation. The basic presumptions of re-
gression analysis are as follows:

random errors iε  are normally distributed random 
quantities; means of all iε are equal to zero; 0iEε = ; dis-
persions of all iε  are equal (presumption of homoske-
dasticity); 2

iDε = σ ; the data do not possess any vari-
ances (Astivia & Zumbo, 2019). 

In the classical model of multiple linear regression 
analysis, variables Y, X1, X2 ,..., XK are quantitative, meas-
ured on interval or ratio scales.

When constructing a regression model for systems 
that depend on qualitative parameters (e.g., there are 
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two different surfaces on which the virus concentration 
is measured, or two different experimental conditions, 
etc.), the regression model is supplemented by binary 
qualitative variables, also called pseudovariables. All bi-
nary variables can acquire only two values. For instance: 

Y = β0 + β1D + β2X + ε, here {0,1}D ∈ .

When a categorical variable has m>2 categories, it is 
replaced by a (m–1) binary variable. Regression equa-
tions can be constructed with several binary variables, 
interactions of binary variables or interactions of quan-
titative and pseudovariables, for instance, Y = β0 + β1D + 
β2X + β3(D´X) + ε. A detailed description of regression 
models with pseudovariables and interactions is present-
ed in literature (Darlington & Hayes, 2017).

If the variables are not suitable for linear regression, 
they are undergoing a transformation. This problem is 
often solved by logarithmizing both the dependent vari-
able and some of the independent variables. Sometimes 
the variables to be included in the regression model are 
raised to an appropriate degree, or the interactions (mul-
tiplications) of two or more variables are included. If the 
variables cannot be transformed to suit linear regression 
analysis, then nonlinear regression analysis is employed. 
Although it is implemented in a number of statistical 
packages (SPSS, SAS, STATISTICA, STATA, R, etc.), the 
problem of optimising selection of an “initial (starting) 
point” for an algorithm is often encountered, i.e. it is dif-
ficult to find the global minimum of function L (Lalanne 
& Mesbah, 2016, 2017). Thus, in most cases, the first at-
tempt is not to apply nonlinear regression analysis, but 
to transform the data to suit a multiple linear regression 
analysis.

Based on a sample’s multiple linear regression func-
tion 0 1 1 2 2

ˆ ... K KY b b X b X b X= + + + + , mean Y values for 
fixed values of independent variables are forecasted.

After constructing the regression equation, it is nec-
essary to determine whether the regression equation 
obtained corresponds the data well. The smaller is the 
difference between the observed values Yi and a sample’s 
regression function-based forecasts, the better the regres-
sion function corresponds the research data. The differ-
ence is referred to as a residual error or simply a residual.

ˆ
i i ie Y Y= − ,

here ie  – residual; Yi– the value observed; îY – regres-
sion equation-based value. The major measures of the 
relevance a regression model are the standard error of es-
timate and Adjusted R Square ( 2

adjr ). Suppose that based 
on the observation results ( 1 2, ,..., , )i i iK i(x x x y , 1,i n= , a 
sample’s regression equation was constructed. Residual 

Error sum of square 2 2

1 1

ˆ( )
n n

e i i i
i i

SS Y Y e
= =

= − =∑ ∑ , and the 

standard error of estimate 
1

e
e

SS
s

n K
=

− −
describe dis-

persion of Y values around the regression function which 
is not explained by linear regression. The closer to zero 

is the standard error of estimate, the better is the model.
Adjusted R Square 2

adjr  considers a sample size n and 
the number of independent variables in regression equa-
tion K. 

12

1

1
e

P

SS
n K

adj SS
n

r − −

−

= − . 

It indicates which part of the variable’s Y dispersion 
around the mean can be explained by Y linear regression 
with respect to independent variables X1, X2, …, XK. The 
closer to the unit is 2

adjr , the larger part of the dispersion 
is explained by linear regression, i.e. the better the regres-
sion function describes variable Y.

When solving regression analysis problems, the ques-
tion of whether independent variable Xj affects Y varia-
tion often arises. Typically, the effects of Xj on Y variation 
are verfied by testing the null hypothesis:

 0 : 0jH β = , i.e. the coefficient at population Xj in 
the regression equation is equal to zero. The alternative 
hypothesis : 0a jH β ≠  implies the existence of a linear 
relationship between Xj and Y, when j = 1,2, …, K. The 
hypotheses concerning the regression equation coeffi-
cients are tested by employing Student’s statistics.

( )~ 1 , 0,1,..., .
j

j
j

b

b
T St n K j K

s
= − − =

If the null hypothesis is rejected, then coefficient βj 
statistically significantly differs from zero, i.e. Y values 
depend on Xj .  Population coefficient’s jβ  confidence 
intervals (at the confidence level 1− α ) are estimated by 
the formula:

1 /2; 1 /2 ; 1j jj n K b j j n K bb t s b t s−α − − α − −− ⋅ ≤ β ≤ − ⋅ ,

here /2 ; 1n Ktα − −  denotes α/2 quantile of a Student’s dis-
tribution with n–K–1 degrees of freedom, when j = 0,1, 
…, K. 

When comparing jβ
 
coefficients, we cannot evaluate 

the relative significance of variables Xj by forecasting be-
cause the magnitude of jβ  depends on Xj measurements 
and data distribution. Therefore, a standardized linear 
regression function is often sought. Dependent variable 
Y and independent variables X1, X2 ,..., XK  are replaced 
by z-values, and the least squares method is employed 

to estimate the standardized coefficients BETAj, 1,j K= . 
The standardized coefficients BETAj indicate which vari-
able Xj has a greater impact on Y forecast. BETAj higher 
by the absolute value indicates a greater Y’s dependence 
on Xj (Čekanavičius & Murauskas, 2002).

The standard regression error is used to define the 
intervals within which individual Y values or the mean 
of Y values fall with a particular degree of reliability. We 
will explain how the mean of dependent variable Y is 
forecasted in the case of one-variable regression analy-
sis. With a fixed X, the interval of Y mean values can be 
estimated. If the value of independent variable X = Xp 
is fixed, then the confidence interval for Y’s conditional 
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mean ( / )pE Y X X=  is estimated by the formula: 
here 

( )
( )

ˆ ˆ1 /2, 2 /2, 2

2

ˆ
2

1

ˆ ˆ( / )

1 .

n p nY Y

p
eY n

i
i

Y t S E Y X X Y t S

X X
S S

n
X X

−α − α −

=

− ⋅ ≤ = ≤ − ⋅

−
= +

−∑

The width of the confidence interval is affected by: 
confidence level 1− α , data distribution, sample size n, 
distance between point Xp and X mean. Similarly, the 
confidence interval for the forecasted individual Y values 
is estimated, only it is always wider than the confidence 
interval estimated for the conditional Y mean.

The model of multiple regression analysis is best 
suited to forecast when all independent variables X1, 
X2,..., XK strongly correlate with Y, but do not correlate 
or weakly correlate with each other. When strong cor-
relations between independent variables X1, X2,...,XK are 
observed, the problem of mulicollinearity is encountered. 
Due to multicollinearity of the variables, the effects of 
the correlating variables on Y forecast cannot be well 
distinguished, the “wrong” sign of the regression func-
tion coefficient is obtained, and the coefficients of the 
regression equation become extremely unstable – several 
additional or removed observations can change them sig-
nificantly (Judd et al., 2017). Multicollinearity of the vari-
ables is estimated by employing various statistics, Vari-
ance Inflation Factor VIFj being the most common. If 
4<VIFj<10, it proposes that variable Xj is multicollinear 
(medium to strong); if VIFj>=10, then variable Xj is “ex-
cesivelly multicollinear” with Tolerance TOLj=1/VIFj. If 
0.1<TOLj<0.25, it proposes that variable Xj is multicol-
linear (medium to strong); if TOLj<=0.1, then variable Xj 
is “excesivelly multicollinear” (Darlington, 2017).

There are no universal methods for reducing multi-
collinearity, and there is no consensus on this issue in 
previously published studies. Authors often suggest in-
creasing the sample, abandoning a part of multicollinear 
variables, replacing variables with major components, 
and other methods (Desboulets, 2018).

When a sample is small, even a single, very different 
observation can statistically significantly alter the values 
of the regression equation coefficients. Thus, when con-
structing regression models, it is important to identify 
any variances in the data. Currently, a number of vari-
ance identification methods are applied (Darlington & 
Hayes, 2017). Variances are identified by comparing the 
impact measure values, estimated for each observation, 
with the marginal values. 

Here we provide some of the measures most com-
monly used in regression models. Variances are identi-
fied by employing the standardized residual, which is 
obtained from residual ei by extracting the arithmetic 
mean of the sample of residues and dividing by standard 
deviation. The mean of the standardized residual is equal 

to 0, while standard deviation is equal to 1. An observa-
tion is considered a variance if the absolute value of the 
standardized residual exceeds 3 standard deviations.

The Cook’s effect measure (CookDi) indicates vari-
ance in the forecast when the ith observation is elimi-
nated (Lalanne & Mesbah, 2017). If Cooks Di>4/n, then 
the ith observation is considered a variance, i = 1,...,n; 
here n denotes a sample size. 

Leverage hi and centered leverage chi. Chi = 
hi–1/n estimates the distance of the ith observation

1 2, ,..., )i i Ki(x x x  to the “centre” 1 2, ,..., )K(x x x . An obser-
vation is considered a variance if chi>2(K+1)/n (for large 
samples) or chi>3(K+1)/n (for small samples) (Centers 
for Disease Control and Prevention, 2020; World Health 
Organization, 2020); here K denotes a number of inde-
pendent variables in the regression equation.

A studentized residual 
2
( )(1 )

is
i

ii

e
e

s h
=

−
, here ( )is  

denotes standard deviation when the ith observation is 
eliminated. Observation 1 2, ,..., , )i i Ki i(x x x y  can be con-

sidered a variance if the studentized residual 2s
ie > . A 

more liberal approach can also be followed: an observa-
tion is considered a variance when 3s

ie > . 

The effect measure iDfFit indicates the effect of 
eliminating the ith observation on the forecasted value 

îY , ( )
ˆ ˆ

i i i iDfFit Y Y= − ,

 

here ( )î iY  denotes a forecast that 
is obtained by the regression equation when the ith ob-
servation is eliminated. To identify the variances, the 
standardized iDfFit  value . iStd DfFit  is employed. If

. 2 ( 1) /iStd DfFit K n> ⋅ + , then the ith observation is 
considered a variance, and its elimination affects forecast 

îY . 
The effect measure CovRatioi – a covariance ratio – 

indicates the effect of eliminating the ith observation on 
the covariance matrix determinant. Elimination of the 
observations with CovRatioi value around 1 has an insig-
nificant impact on the regression equation coefficients, 
while the observations with the values that do not fall 
into the interval (1–3K/n; 1+3K/n) are influential. 

The effect measure jiDfBetas  indicates the effect 
of the ith observation on regression coefficient jβ . 

( )ji j j iDfBetas b b= − , here  ( )j ib denotes point estimate 
of coefficient jβ  when the ith observation is eliminat-
ed, j=0,1,…,K. To identify the variances, standardized 

jiDfBetas  is employed. If . 2 /jiStd DfBetas n> , then 
the ith observation is considered a variance, and its elim-
ination affects point estimate jb  of regression coefficient 

jβ , and at the same time – the conclusions based on this 
coefficient.

The alternatives to the linear regression analysis are 
applied when the data do not meet the model presump-
tions. There is no need to abandon linear regression 
for the slightest violation of the presumptions because 
the results of this analysis usually best reveal potential 
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dependencies and effect trends. Linear regression is suf-
ficiently resistant to violations of the presumptions, and 
its result analysis is much more comprehensive. In addi-
tion, data transformation can always be employed. After 
logarithmizing the traits, all variances often disappear, 
and the data become similar to normal. Linear regression 
alternatives should only be employed when data trans-
formations do no work.

In the case of the violated homoscedasticity presump-
tion (Astivia & Zumbo, 2019), a regression of stabilized 
residual errors is applied; in the case when the data pos-
sess variances, robust regression is applied; in the case of 
the violated normality presumption, quantile regression 
is applied; in the case when trait dependencies are non-
linear, the non-linear regression is applied.

Robust regression is only robust to variances. Obser-
vations are assigned particular weights which are consid-
ered when estimating coefficient values. If one observa-
tion is very different from the others, its weight is close 
to zero. In other words, then variances do not have any 
significant impact on the values of the regression equa-
tion coefficients. When applying a robust regression 
analysis, the weights assigned should be verified. This 
allows to subjectively assess whether estimation results 
are acceptable. The weight scale ranges from 0 to 1. If the 
weight is small, then the effect of an observation on value 
estimation is relatively insignificant, i.e. an observation 
is treated as uncharacteristic of the population. When 
the weight is equal to 0, an observation is not used for 
value estimation, i.e. it is eliminated from the regression 
analysis. However, it is necessary to check the reasons 
why this was done.

The idea of quantile regression is to model the quan-
tile value instead of the mean value of a dependent vari-
able with respect to the regressors selected (Furno & Vis-
tocco, 2018). It is recommended to use when the data 
have variances and / or the presumption of normality is 
violated. Heteroscedasticity has little effect on quantile 
regression. Quantiles are insensitive to variances, but 
when the data possess significant variances, quantile re-
gression is not applied. Variances affect the parameter 
estimates because when estimating the values of the re-
gression coefficients, the difference between the observa-
tions and quantile (in the classical regression – the mean) 
is considered. 

Non-linear regression is applied when the model 
cannot be made linear by transforming variables (Miguez 
et al., 2018).

In non-linear regression, the expression of the model 
is selected by a researcher. All values of unknown param-
eters are found iteratively. The initial values of unknown 
parameters are selected by a researcher. All estimates are 
sensitive to variances. Several examples of non-linear re-
gression models are presented in Table 2.

Conclusions 

Literature analysis revealed that many questions con-
cerning the transfer of SARS-CoV-2 with aerosol parti-
cles still remain unanswered. Unanswered questions di-
rectly related to the project are as follows: How does the 
ability of an airborne virus to infect diminish? How do 
speaking, coughing and breathing affect viral emissions? 
What is the mechanism of aerosol generation and how 
does the amount of contaminated aerosols change when 
providing different dental services? How does a doctor’s 
risk of getting infected with the virus depend on the 
concentration of aerosols, the type of personal protec-
tive equipment, and the length of time in the infected 
environment? What engineering measures are most ef-
fective in preventing the infection caused by breathing 
and touching contaminated surfaces? Ultraviolet ger-
micidal irradiation (UVGA) is known to be effective in 
eradicating viruses in the air and on surfaces, but little is 
known about the effectiveness of UVGA in eradicating 
SARS-CoV-2, including the dose of UVGA required to 
eradicate the virus, depending on temperature, humidity, 
and other traits.

When evaluating the effectiveness of the measures 
undertaken to prevent transmission of respiratory vi-
ruses (SARS-CoV-2 causing COVID-19) through air 
droplets, two major characteristics  – respiratory virus 
concentration and survival (in the air or on surfaces) – 
are considered. The studies are focused on the dependen-
cies of the above-mentioned characteristics on a number 
of quantitative and/or qualitative traits: type of aerosols; 
UV irradiation characteristics (a UV source type, wave-
length, beam intensity, irradiation duration, irradiation 
dose); characteristics of an irradiated object (tempera-
ture, length, width, volume, area, age, condition); type 
and degree of risk of a dental service, characteristics of 
a dental office (area, volume, air ventilation system, air 
ventilation intensity, air temperature, air humidity). In 
virtually all studies, the respiratory virus (SARS-CoV-2 
causing COVID-19) concentration or survival rate de-
pendence was examined for only 1-3 characteristics. 
Other traits were considered fixed or not mentioned at 
all.

When evaluating the respiratory virus (SARS-CoV-2 
causing COVID-19) concentration and survival rate 
dependence on a number of traits, the methods of de-
scriptive statistics, confidence intervals, hypothesis test-
ing, dispersion analysis, trait dependence analysis, and 
regression analysis are employed. All the above-listed 
methods were tested under laboratory conditions and 
thus can be applied to evaluate the effectiveness of the 

Table 2. Examples of non-linear regression models

Name Expression

Asymptomatic 
regression
Asymptomatic 
regression
Density
Gauss
Gompertz

b1 + b2 × exp(b3 × x)

b1 – (b2 × (b3 ** x))

(b1 + b2 × x)** (–1/b3)
b1 × (1 – b3 × exp(–b2 × x**2))
b1 × exp(–b2 × exp(–b3 × x))
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project product – a device designed to prevent transmis-
sion of respiratory viruses through air droplets. Selec-
tion of a particular method depends on a set of traits 
to be analysed, a trait type (quantitative, qualitative), a 
trait distribution type, and parameters. The report pro-
vides a brief description of the methods selected as well 
as recommendations and presumptions for their relevant 
application. All of the methods selected are implemented 
in software packages for data analysis (SAS, R, SPSS).

The analysis of mathematical methods has shown 
that mathematical methods are essential for the develop-
ment of economic algorithms in the development of new 
products in the fight against the COVID-19 pandemic.

Taking into account the characteristics of the ap-
plication of the algorithm, it is found that the less time 
the user spends using additional COVID-19 destruction 
equipment, the lower the cost of using such equipment 
in the final version.
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